Какие углеводы называют моно. Углеводы. Примеры решения задач

Одной из разновидностей органических соединений, необходимых для полноценного функционирования человеческого организма, являются углеводы.

Они разделяются на несколько типов согласно своему строению — моносахариды, дисахариды и полисахариды. Следует разобраться, для чего они нужны и каковы их химические и физические свойства.

Углеводами называют соединения, в составе которых находятся углерод, водород и кислород. Чаще всего они имеют природное происхождение, хотя некоторые создаются промышленным путем. Их роль в жизнедеятельности живых организмов огромна.

Основными их функциями называют следующие:

  1. Энергетическая . Эти соединения – главный источник энергии. Большая часть органов может полноценно работать за счет энергии, полученной при окислении глюкозы.
  2. Структурная . Углеводы необходимы для формирования почти всех клеток организма. Клетчатка играет роль опорного материала, а в костях и хрящевой ткани находятся углеводы сложного типа. Одним из компонентов клеточных мембран является гиалуроновая кислота. Также углеводистые соединения требуются в процессе выработки ферментов.
  3. Защитная . При функционировании организма осуществляется работа желез, выделяющих секреторные жидкости, нужные для защиты внутренних органов от патогенного воздействия. Значительная часть этих жидкостей представлена углеводами.
  4. Регуляторная . Эта функция проявляется во влиянии на человеческий организм глюкозы (поддерживает гомеостаз, контролирует осмотическое давление) и клетчатки (воздействует на желудочно-кишечную перистальтику).
  5. Особые функции . Они свойственны отдельным видам углеводов. К таким особым функциям относятся: участие в процессе передачи нервных импульсов, формирование разных групп крови и пр.

Исходя из того, что функции углеводов достаточно разнообразны, можно предположить, что эти соединения должны различаться по своему строению и особенностям.

Это действительно так, и основная классификация их включает в себя такие разновидности, как:

  1. . Они считаются наиболее простыми. Остальные типы углеводов вступают в процесс гидролиза и распадаются на более мелкие составляющие. У моносахаридов такой способности нет, они являются конечным продуктом.
  2. Дисахариды . В некоторых классификациях их относят к олигосахаридам. В их составе находится две молекулы моносахарида. Именно на них делится дисахарид при гидролизе.
  3. Олигосахариды . В составе этого соединения находится от 2 до 10 молекул моносахаридов.
  4. Полисахариды . Эти соединения являются самой крупной разновидностью. В их состав входит больше 10 молекул моносахаридов.

У каждого вида углеводов есть свои особенности. Нужно рассмотреть их, чтобы понять, как каждый из них влияет на человеческий организм и в чем его польза.

Эти соединения являются самой простой формой углеводов. В их составе находится одна молекула, поэтому в ходе гидролиза не происходит их деление на мелкие блоки. При объединении моносахаридов формируются дисахариды, олигосахариды и полисахариды.

Они отличаются твердым агрегатным состоянием и сладким вкусом. У них есть способность растворяться в воде. Также они могут растворяться в спиртах (реакция слабее, чем с водой). Моносахариды почти не реагируют на смешение с эфирами.

Чаще всего упоминают природные моносахариды. Некоторые из них люди потребляют вместе с продуктами питания. К ним относят глюкозу, фруктозу и галактозу.

  • шоколад;
  • фрукты;
  • некоторые виды вина;
  • сиропы и пр.

Основной функцией углеводов такого типа является энергетическая. Нельзя сказать, что организм не может без них обойтись, но у них есть свойства, важные для полноценной работы организма, например, участие в обменных процессах.

Моносахариды организм усваивает быстрее всего, что происходит в ЖКТ. Процесс усвоения сложных углеводов, в отличие от простых соединений, не так прост. Сначала сложные соединения должны разделиться до моносахаридов, лишь после этого они усваиваются.

Это один из распространенных видов моносахаридов. Он представляет собой белое кристаллическое вещество, которое формируется естественным путем – в ходе фотосинтеза либо при гидролизе. Формула соединения — С6Н12О6. Вещество хорошо растворимо в воде, обладает сладким вкусом.

Глюкоза обеспечивает клетки мышечной и мозговой тканей энергией. При попадании в организм вещество усваивается, попадает в кровь и распространяется по всему телу. Там происходит ее окисление с высвобождением энергии. Это основной источник энергетической подпитки для мозга.

При нехватке глюкозы в организме развивается гипогликемия, которая в первую очередь отражается на функционировании мозговых структур. Однако чрезмерное ее содержание в крови тоже опасно, поскольку ведет к развитию сахарного диабета. Также при употреблении большого количества глюкозы начинает увеличиваться масса тела.

Фруктоза

Она относится к числу моносахаридов и очень похожа на глюкозу. Отличается более медленными темпами усвоения. Это объясняется тем, что для усвоения необходимо, чтобы фруктоза сначала преобразовалась в глюкозу.

Поэтому данное соединение считается неопасным для диабетиков, поскольку его потребление не ведет к резкому изменению количества сахара в крови. Тем не менее при таком диагнозе осторожность все же необходима.

У фруктозы есть способность к быстрому преобразованию в жирные кислоты, что становится причиной развития ожирения. Также из-за этого соединения снижается чувствительность к инсулину, что вызывает диабет 2 типа.

Это вещество можно получить из ягод и фруктов, а еще – из меда. Обычно оно там находится в сочетании с глюкозой. Соединению тоже присущ белый цвет. Вкус сладкий, причем эта особенность проявляется интенсивнее, чем в случае с глюкозой.

Другие соединения

Существуют и другие моносахаридные соединения. Они могут быть природными и полуискусственными.

К природным относится галактоза. Она тоже содержится в пищевых продуктах, но не встречается в чистом виде. Галактоза является результатом гидролиза лактозы. Основным ее источником называют молоко.

Другими природными моносахаридами являются рибоза, дезоксирибоза и манноза.

Также есть разновидности таких углеводов, для получения которых используются промышленные технологии.

Эти вещества тоже находятся в продуктах питания и попадают в человеческий организм:

  • рамноза;
  • эритрулоза;
  • рибулоза;
  • D-ксилоза;
  • L-аллоза;
  • D-сорбоза и пр.

Каждое из этих соединений отличается своими особенностями и функциями.

Дисахариды и их применение

Следующий тип углеводных соединений – дисахариды. Они считаются сложными веществами. В результате гидролиза из них образуется две молекулы моносахаридов.

Этот тип углеводов отличается следующими особенностями:

  • твердость;
  • растворимость в воде;
  • слабая растворимость в концентрированных спиртах;
  • сладкий вкус;
  • цвет – от белого до коричневого.

Основные химические свойства дисахаридов заключаются в реакциях гидролиза (происходит разрыв гликозидных связей и образование моносахаридов) и конденсации (формируются полисахариды).

Встречается 2 типа таких соединений:

  1. Восстанавливающие . Их особенностью является наличие свободной полуацетальной гидроксильной группы. За счет нее у таких веществ присутствуют восстановительные свойства. К данной группе углеводов относятся целлобиоза, мальтоза и лактоза.
  2. Невосстанавливающие . У этих соединений нет возможности к восстановлению, поскольку у них отсутствует полуацетальная гидроксильная группа. Наиболее известными веществами этого типа являются сахароза и трегалоза.

Эти соединения широко распространены в природе. Они могут встречаться как в свободном виде, так и в составе других соединений. Дисахариды являются источником энергии, поскольку при гидролизе из них образуется глюкоза.

Лактоза очень важна для детей, поскольку является основным из компонентов детского питания. Еще одной функцией углеводов этого типа является структурная, поскольку они входят в состав целлюлозы, которая нужна для формирования растительных клеток.

Характеристика и особенности полисахаридов

Еще одной разновидностью углеводов являются полисахариды. Это наиболее сложный тип соединений. Состоят они из большого количества моносахаридов (основной их компонент — глюкоза). В ЖКТ полисахариды не усваиваются – предварительно осуществляется их расщепление.

Особенности этих веществ таковы:

  • нерастворимость (либо слабая растворимость) в воде;
  • цвет желтоватый (или окраска отсутствует);
  • у них нет запаха;
  • почти все они безвкусны (некоторые имеют сладковатый вкус).

К химическим свойствам этих веществ относится гидролиз, который осуществляется под влиянием катализаторов. Результатом реакции становится распад соединения на структурные элементы – моносахариды.

Еще одно свойство – образование производных. Полисахариды могут вступать в реакцию с кислотами.

Продукты, образующиеся в ходе этих процессов, очень разнообразны. Это ацетаты, сульфаты, сложные эфиры, фосфаты и пр.

Примеры полисахаридов:

  • крахмал;
  • целлюлоза;
  • гликоген;
  • хитин.

Образовательный видео-материал о функциях и классификации углеводов:

Эти вещества важны для полноценного функционирования организма целиком и клеток по отдельности. Они снабжают организм энергией, участвуют в образовании клеток, оберегают внутренние органы от повреждений и неблагоприятного воздействия. Также они играют роль запасных веществ, которые нужны животным и растениям на случай сложного периода.

Углеводы - органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, причем водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2: 1).

Общая формула углево­дов - С n (Н 2 О) m , т. е. они как бы состоят из углерода и во­ды, отсюда и название клас­са, которое имеет историче­ские корни. Оно появилось на основе анализа первых известных углеводов. В даль­нейшем было установлено, что имеются углеводы, в мо­лекулах которых не соблюда­ется указанное соотношение (2: 1), например дезоксирибоза - С 5 Н 10 О 4 . Извест­ны также органические соединения, состав кото­рых соответствует приведенной общей формуле, но которые не принадлежат к классу углеводов. К ним относятся, например, формальдегид СН 2 О и уксус­ная кислота СН 3 СООН.

Однако название «углеводы» укоренилось и в настоящее время является общепризнанным для этих веществ.

Углеводы по их способности гидролизоваться можно разделить на три основные группы: моно-, ди- и полисахариды.

Моносахариды - углеводы, которые не гидро­лизуются (не разлагаются водой). В свою очередь, в зависимости от числа атомов углерода, моноса­хариды подразделяются на триозы (молекулы ко­торых содержат три углеродных атома), тетрозы (четыре углеродных атома), пентозы (пять), гексозы (шесть) и т. д.

В природе моносахариды представлены преиму­щественно пентозами и гексозами .

К пентозам относятся, например, рибоза - С 5 Н 10 О 5 и дезоксирибоза (рибоза, у которой «от­няли» атом кислорода) - С 5 Н 10 О 4 . Они входят в состав РНК и ДНК и опре­деляют первую часть назва­ний нуклеиновых кислот.

К гексозам , имеющим об­щую молекулярную формулу С 6 Н 12 О 6 , относятся, например, глюкоза, фруктоза, галактоза.


Дисахариды - углево­ды, которые гидролизуются с образованием двух моле­кул моносахаридов, напри­мер гексоз. Общую формулу подавляющего большинства дисахаридов вывести несложно: нужно «сложить» две формулы гексоз и «вычесть» из получившейся формулы молекулу воды - С 12 Н 22 О 11 . Соответствен­но можно записать и общее уравнение гидролиза:

К дисахаридам относятся:

1. Сахароза (обычный пищевой сахар), которая при гидролизе образует одну молекулу глюкозы и молекулу фруктозы. Она содержится в большом количестве в сахарной свекле, сахарном тростнике (отсюда и названия - свекловичный или трост­никовый сахар), клене (канадские первопроходцы добывали кленовый сахар), сахарной пальме, ку­курузе и т. д.

2. Мальтоза (солодовый сахар), которая гидро­лизуется с образованием двух молекул глюкозы. Мальтозу можно получить при гидролизе крахмала под действием ферментов, содержащихся в соло­де, - пророщенных, высушенных и размолотых зернах ячменя.

3. Лактоза (молочный сахар), которая гидроли­зуется с образованием молекул глюкозы и галак­тозы. Она содержится в молоке млекопитающих (до 4-6 %), обладает невысокой сладостью и ис­пользуется как наполнитель в драже и аптечных таблетках.

Сладкий вкус разных моно- и дисахаридов раз­личен. Так, самый сладкий моносахарид - фрук­тоза - в 1,5 раза слаще глюкозы, которую при­нимают за эталон. Сахароза (дисахарид), в свою очередь, в 2 раза слаще глюкозы и в 4-5 раз - лактозы, которая почти безвкусна.

Полисахариды - крахмал, гликоген, декстри­ны, целлюлоза и т. д. - углеводы, которые гидро­лизуются с образованием множества молекул моно­сахаридов, чаще всего глюкозы.

Чтобы вывести формулу полисахаридов, нуж­но от молекулы глюкозы «отнять» молекулу во­ды и записать выражение с индексом n: (С 6 Н 10 О 5) n , ведь именно за счет отщепления молекул воды в природе образуются ди- и полисахариды.

Роль углеводов в природе и их значение для жизни человека чрезвычайно велики. Образуясь в клетках растений в результате фотосинтеза, они выступают источником энергии для клеток живот­ных. В первую очередь это относится к глюкозе.

Многие углеводы (крахмал, гликоген, сахаро­за) выполняют запасающую функцию, роль резерва питательных веществ .

Кислоты РНК и ДНК, в состав которых входят некоторые углеводы (пентозы-рибозы и дезоксирибоза), выполняют функции передачи наследствен­ной информации.

Целлюлоза - строительный материал расти­тельных клеток - играет роль каркаса для оболо­чек этих клеток. Другой полисахарид - хитин - выполняет аналогичную роль в клетках некоторых животных: образует наружный скелет членистоно­гих (ракообразных), насекомых, паукообразных.

Углеводы служат в конечном итоге источником нашего питания: мы потребляем зерно, содержа­щее крахмал, или скармливаем его животным, в организме которых крахмал превращается в бел­ки и жиры. Самая гигиеничная одежда изготовле­на из целлюлозы или продуктов на ее основе: хлоп­ка и льна, вискозного волокна, ацетатного шелка. Деревянные дома и мебель построены из той же целлю­лозы, образующей древесину.

В основе производства фото- и кинопленки - все та же целлюлоза. Книги, газеты, письма, денежные банкно­ты - все это продукция цел­люлозно-бумажной промышленности. Значит, углеводы обеспечивают нас всем необходимым для жизни: пищей, одеждой, кровом.

Кроме того, углеводы участвуют в построении сложных белков, ферментов, гормонов. Углевода­ми являются и такие жизненно необходимые веще­ства, как гепарин (он играет важнейшую роль - предотвращает свертывание крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промыш­ленности - вспомните знаменитый торт «Птичье молоко»).

Необходимо подчеркнуть, что единственным видом энергии на Земле (помимо ядерной, разуме­ется) является энергия Солнца, а единственным способом ее аккумулирования для обеспечения жизнедеятельности всех живых организмов явля­ется процесс фотосинтеза , протекающий в клетках живых растений и приводящий к синтезу угле­водов из воды и углекислого газа. Именно при этом превращении образуется кислород, без ко­торого жизнь на нашей планете была бы невозможна:

Моносахариды. Глюкоза

Глюкоза и фруктоза - твердые бесцветные кристаллические вещества. Глюкоза содержится в соке винограда (отсюда название «виноградный сахар») вместе с фруктозой, которая содержится в некоторых фруктах и плодах (отсюда название «фруктовый сахар»), составляет значительную часть меда. В крови человека и животных посто­янно содержится около 0,1 % глюкозы (80-120 мг в 100 мл крови). Большая ее часть (около 70 %) подвергается в тканях медленному окислению с выделением энергии и образованием конечных продуктов - углекислого газа и воды (процесс гли­колиза):

Энергия, выделяемая при гликолизе, в значи­тельной степени обеспечивает энергетические по­требности живых организмов.

Превышение содержания глюкозы в крови уровня 180 мг в 100 мл крови свидетельствует о нарушении углеводного обмена и развитии опас­ного заболевания - сахарного диабета.

Строение молекулы глюкозы

О строении молекулы глюкозы можно судить на основании опытных данных. Она реагирует с карбоновыми кислотами, образуя сложные эфи­ры, содержащие от 1 до 5 остатков кислоты. Ес­ли раствор глюкозы прилить к свежеполученно­му гидроксиду меди (II), то осадок растворяется и образуется ярко-синий раствор соединения меди, т. е. происходит качественная реакция на много­атомные спирты. Следовательно, глюкоза является многоатомным спиртом. Если же подогреть полу­ченный раствор, то вновь выпадет осадок, но уже красноватого цвета, т. е. произойдет качественная реакция на альдегиды. Аналогично, если раствор глюкозы нагреть с аммиачным раствором оксида серебра, то произойдет реакция «серебряного зер­кала». Следовательно, глюкоза является одновре­менно многоатомным спиртом и альдегидом - алъдегидоспиртом. Попробуем вывести структурную формулу глюкозы. Всего атомов углерода в моле­куле C 6 H 12 O 6 шесть. Один атом входит в состав альдегидной группы :

Остальные пять атомов связываются с пятью гидроксигруппами.

И наконец, атомы водорода в молекуле распре­делим с учетом того, что углерод четырехвалентен:

Однако установлено, что в растворе глюко­зы помимо линейных (альдегидных) молекул существуют молекулы циклического строения, из которых состоит кристаллическая глюкоза. Превращение молекул линейной формы в цикли­ческую можно объяснить, если вспомнить, что атомы углерода могут свободно вращаться вокруг σ-связей, расположенных под углом 109° 28′. При этом альдегидная группа (1-й атом углерода) мо­жет приблизиться к гидроксильной группе пятого атома углерода. В первой под влиянием гидрокси- группы разрывается π-связь: к атому кислорода присоединяется атом водорода, и «потерявший» этот атом кислород гидроксигруппы замыкает цикл:

В результате такой перегруппировки атомов образуется циклическая молекула. Циклическая формула показывает не только порядок связи ато­мов, но и их пространственное расположение. В ре­зультате взаимодействия первого и пятого атомов углерода появляется новая гидроксигруппа у пер­вого атома, которая может занять в пространстве два положения: над и под плоскостью цикла, а по­тому возможны две циклические формы глюкозы:

а) α-форма глюкозы - гидроксильные группы при первом и втором атомах углерода располо­жены по одну сторону кольца молекулы;

б) β-форма глюкозы - гидроксильные группы на­ходятся по разные стороны кольца молекулы:

В водном растворе глюкозы в динамическом равновесии находятся три ее изомерные формы - циклическая α-форма, линейная (альдегидная) форма и циклическая β-форма:

В установившемся динамическом равновесии преобладает β-форма (около 63 %), так как она энер­гетически предпочтительнее - у нее OH-группы у первого и второго углеродных атомов по разные стороны цикла. У α-формы (около 37 %) OH-группы у тех же углеродных атомов расположены по одну сторону плоскости, поэтому она энергетически ме­нее устойчива, чем β-форма. Доля же линейной фор­мы в равновесии очень мала (всего около 0,0026 %).

Динамическое равновесие можно сместить. На­пример, при действии на глюкозу аммиачного рас­твора оксида серебра количество ее линейной (аль­дегидной) формы, которой в растворе очень мало, пополняется все время за счет циклических форм, и глюкоза полностью подвергается окислению до глюконовой кислоты.

Изомером альдегидоспирта глюкозы является кетоноспирт - фруктоза :

Химические свойства глюкозы

Химические свойства глюкозы, как и любого другого органического вещества, определяются ее строением. Глюкоза обладает двойственной функ­цией, являясь и альдегидом , и многоатомным спиртом , поэтому для нее характерны свойства и много­атомных спиртов, и альдегидов.

Реакции глюкозы как многоатомного спирта.

Глюкоза дает качественную реакцию много­атомных спиртов (вспомните глицерин) со свеже­полученным гидроксидом меди (II), образуя ярко­-синий раствор соединения меди (II).

Глюкоза, подобно спиртам, может образовывать сложные эфиры.

Реакции глюкозы как альдегида

1. Окисление альдегидной группы . Глюкоза как альдегид способна окисляться в соответствующую (глюконовую) кислоту и давать качественные ре­акции альдегидов.

Реакция «серебряного зеркала»:

Реакция со свежеполученным Cu(OH) 2 при на­гревании:

Восстановление альдегидной группы . Глю­коза может восстанавливаться в соответствующий спирт (сорбит):

Реакции брожения

Эти реакции протекают под действием особых биологических катализаторов белковой приро­ды - ферментов.

1. Спиртовое брожение:

издавна применяемое человеком для получения этилового спирта и алкогольных напитков.

2. Молочнокислое брожение:

которое составляет основу жизнедеятельности мо­лочнокислых бактерий и происходит при скиса­нии молока, квашении капусты и огурцов, силосо­вании зеленых кормов.\

Химические свойства глюкозы - конспект

Полисахариды. Крахмал и целлюлоза.

Крахмал - белый аморфный порошок, не рас­творяется в холодной воде. В горячей воде он раз­бухает и образует коллоидный раствор - крах­мальный клейстер.

Крахмал содержится в цитоплазме раститель­ных клеток в виде зерен запасного питательного вещества. В картофельных клубнях содержится около 20 % крахмала, в пшеничных и кукуруз­ных зернах - около 70 %, а в рисовых - почти 80 %.

Целлюлоза (от лат. cellula - клетка), выделен­ная из природных материалов (например, вата или фильтровальная бумага), представляет собой твер­дое волокнистое вещество, нерастворимое в воде.

Оба полисахарида имеют растительное проис­хождение, однако играют в клетке растений разную роль: целлюлоза - строительную, конструкционную функцию, а крахмал - запасающую. Поэтому цел­люлоза является обязательным элементом клеточ­ной оболочки растений. Волокна хлопка содержат до 95 % целлюлозы, волокна льна и конопли - до 80 %, а в древесине ее содержится около 50 %.

Строение крахмала и целлюлозы

Состав этих полисахаридов можно выразить общей формулой (C 6 H 10 O 5) n . Число повторяю­щихся звеньев в макромолекуле крахмала может колебаться от нескольких сотен до нескольких тысяч. Целлюлоза же отли­чается значительно большим числом звеньев и, следова­тельно, молекулярной мас­сой, которая достигает не­скольких миллионов.

Различаются углеводы не только молекулярной мас­сой, но и структурой. Для крахмала характерны два вида структур макромолекул: линейная и развет­вленная. Линейную структуру имеют более мел­кие макромолекулы той части крахмала, которую называют амилозой, а разветвленную структуру имеют молекулы другой составной части крахма­ла - амилопектина.

В крахмале на долю амилозы приходится 10- 20 %, а на долю амилопектина - 80-90 %. Ами­лоза крахмала растворяется в горячей воде, а ами­лопектин только набухает.

Структурные звенья крахмала и целлюлозы по­строены по-разному. Если звено крахмала вклю­чает остатки α-глюкозы , то целлюлоза - остатки β-глюкозы , ориентированные в природные волок­на:

Химические свойства полисахаридов

1. Образование глюкозы. Крахмал и целлюлоза подвергаются гидролизу с образованием глюкозы в присутствии минеральных кислот, например сер­ной:

В пищеварительном тракте животных крахмал подвергается сложному ступенчатому гидролизу:

Организм человека не приспособлен к перева­риванию целлюлозы, так как не имеет ферментов, необходимых для разрыва связей между остатка­ми β-глюкозы в макромолекуле целлюлозы.

Лишь у термитов и жвачных животных (на­пример, коров) в пищеварительной системе живут микроорганизмы, вырабатывающие необходимые для этого ферменты.

2. Образование сложных эфиров . Крахмал мо­жет образовывать эфиры за счет гидроксигрупп, однако эти эфиры не нашли практического при­менения.

Каждое звено целлюлозы содержит три свобод­ных спиртовых гидроксигруппы. Поэтому общую формулу целлюлозы можно записать таким обра­зом:

За счет этих спиртовых гидроксигрупп целлю­лоза и может образовывать сложные эфиры, которые широко применяются.

При обработке целлюлозы смесью азотной и сер­ной кислот получают в зависимости от условий мо­но-, ди- и тринитроцеллюлозу:

Применение углеводов

Смесь моно- и динитроцеллюлозы называют коллоксилином . Раствор коллоксилина в смеси спирта и диэтилового эфира - коллодий - приме­няют в медицине для заклеивания небольших ран и для приклеивания повязок к коже.

При высыхании раствора коллоксилина и камфа­ры в спирте получается целлулоид - одна из пласт­масс, которая впервые стала широко использовать­ся в повседневной жизни человека (из нее делают фото- и кинопленку, а также различные предметы широкого потребления). Растворы коллоксилина в органических растворителях применяются в каче­стве нитролаков. А при добавлении к ним красите­лей получаются прочные и эстетичные нитрокраски, широко используемые в быту и технике.

Как и другие органические вещества, содержа­щие в составе молекул нитрогруппы, все виды ни­троцеллюлозы огнеопасны. Особенно опасна в этом отношении тринитроцеллюлоза - сильнейшее взрывчатое вещество. Под названием «пирокси­лин» она широко применяется для производства оружейных снарядов и проведения взрывных ра­бот, а также для получения бездымного пороха.

С уксусной кислотой (в промышленности для этих целей используют более мощное этерифицирующее вещество - уксусный ангидрид) получают аналогичные (ди- и три-) сложные эфиры целлюло­зы и уксусной кислоты, которые называются аце­тилцеллюлозой :

Ацетилцеллюлозу используют для получения лаков и красок, она служит также сырьем для из­готовления искусственного шелка. Для этого ее рас­творяют в ацетоне, а затем этот раствор продавлива­ют через тонкие отверстия фильер (металлических колпачков с многочисленными отверстиями). Выте­кающие струйки раствора обдувают теплым возду­хом. При этом ацетон быстро испаряется, а высыха­ющая ацетилцеллюлоза образует тонкие блестящие нити, которые идут на изготовление пряжи.

Крахмал , в отличие от целлюлозы, дает синее окрашивание при взаимодействии с йодом. Эта ре­акция является качественной на крахмал или йод в зависимости от того, наличие какого вещества требуется доказать.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Цель занятия: изучение строения и химических свойств углеводов и их роль в организме.

Студент должен знать:

- знать строение, различные виды изомерии моносахаридов и их производных;

- химические свойства моносахаридов и их производных;

- реакции, лежащие в основе катаболизма глюкозы – гликолиз;

- строение и свойства дисахаридов и полисахпридов;

- химические свойства дисахаридов и полисахпридов.

Студент должен уметь:

- объяснить кольчато-цепную таутомерию, конформационную изомерию, оптическую изомерию, кислотно-основные свойства моносахаридов, их окислительно-восстановительные свойства;

- объяснить разницу в структуре восстанавливающих и невос-станавливающих сахаров, причины этого явления.

Углеводы (ув)

Важнейший класс органических соединений, встречающийся в природе. Наиболее известны глюкоза, крахмал, целлюлоза, гликоген, гепарин и др., играющие важное значение в жизненных процессах человека и животных.

УВ – группа природных веществ, относящихся к полиоксикарбонильным соединениям, а также вещества, близкие им по строению.

В номенклатуре УВ широко используется тривиальные названия: рибоза, фруктоза и т.д.

Моносахариды (мс)

Изомерия

    Наличие нескольких асимметрических атомов углерода обусловливает существование большого числа оптических изомеров. Это и энантиомеры (зеркальные изомеры, антиподы), и диастереомеры, и эпимеры. Эпимеры – это диастереомеры, отличающиеся друг от друга конфигурацией только одного асимметрического атома С. Все изомеры, кроме зеркальных, отличаются друг от друга свойствами и имеют свое название:

Принадлежность МС к D- или L-ряду определяется по конфигурации последнего (наиболее удаленного от
гр.) хирального атома С по аналогии со стандартом – глицериновым альдегидом:

Природные сахара – D-сахара, L-сахара поступают в организм извне.


Вновь образовавшийся гидроксил носит название полуацетального, или гликозидного и может по-разному располагаться в пространстве относительно цикла, образуя еще один асимметрический атом углерода в циклической форме. Если полуацетальный гидроксил располагается по одну сторону с гидроксилом, определяющим принадлежность к D- или L-ряду, то такой изомер называется a-изомером, а другой – b-изомером. Стереоизомеры, отличающиеся друг от друга расположением только полуацетального гидроксила в пространстве, называются аномерами .

Процесс образования циклических форм называется аномеризацией. Циклическая и открытая формы легко переходят друг в друга и находятся в динамическом равновесии. При комнатной температуре преобладает циклическая, при нагревании – открытая. Для альдогексоз более характерна пиранозная форма, для пентоз и фруктоз – фуранозная. Все это отражается в названии, например, a-D-глюкопираноза. В кристаллическом состоянии циклические формы закреплены и a-, и b-изомеры стабильны и могут быть отделены друг от друга. При растворении часть молекул переходит в открытую форму, а из нее образуются все виды циклических форм. Так как каждая форма имеет свой угол вращения луча поляризованного света, то до установления динамического равновесия угол вращения будет постоянно меняться. Изменение во времени угла вращения плоскости поляризации света свежеприготовленного раствора углеводов называется мутаротацией .

В настоящее время вместо циклических формул Колли-Толленса чаще пользуются перспективными формулами Хеуорса.

Именно циклическая форма участвуют в образовании ди- и полисахаридов.

Химические свойства

Циклическая и открытая (альдегидная) формы находятся в равновесии. Поэтому возможны,р-ции, характерные для альдегидной и циклической форм.


Все моносахариды взаимодействуют с НСN, РС1 5 , NH 2 OH, NH 2 –NH 2 , NH 2 –NHC 6 H 5 , окисляются, восстанавливаются (Н 2)

В зависимости от характера окислителя и реакции среды МС могут образовывать различные продукты окисления.

1. При действии слабых окислителей: Аg 2 O, NH 4 OH, t o или Cu(ОН) 2 , ОН – , t o идет разрушение углерод-углеродной цепи с образованием оксикислот с небольшим числом атомов С, а сами окислители при этом восстанавливаются до Аg и Сu 2 O(Cu) соответственно. Р-ция находит применение в биохимических анализах для количественного определения сахаров в биологических жидкостях.

Р-ция Толленса:

«Зеркало»

Р-ция (проба) Троммера:

    При осторожном окислении в кислой водной среде, например, бромной водой, образуются к-ты за счет окисления альдегидной группы – альдоновые кислоты:

    При действии сильных окислителей идет окисление по первому и шестому атомам С с образованием аровых к-т:

    При окислении только первичной спиртовой группы (по 6-ому атому С), если альдегидная группа защищена с образованием гликозида, получают уроновые к-ты. В организме этот процесс идет легко под действием ферментов. Уроновые к-ты способны к цикло-оксо-таутомерии. Они являются важной составной частью кислых гетерополисахаридов, например, гепарина, гиалуроновой к-ты.

    Р-ции по спиртовым гидроксилам протекают как в открытой, так и в циклических формах.

МС взаимодействуют с Ме, Ме(ОН) 2 , образуя сахараты, с Сu(OH) 2 , с СН 3 I с образованием простых эфиров, с минеральными и органическими к-тами образуются сложные эфиры, с NH 3 – аминосахара.

Наиболее важны фосфорные эфиры сахаров и аминосахара. Именно в виде фосфорных эфиров рибоза и дезоксирибоза входит в состав НК, соединения глюкозы и фруктозы участвуют в обмене веществ.

Фруктоза + 2Н 3 РО 4 1,6-Дифосфат фруктозы.

Аминосахара в организме образуются довольно легко в процессе аммонолиза. Чаще всего по второму атому С:

Аминосахара являются составной частью гетерополисахаридов.

    Р-ции по полуацетальному гидроксилу

Эти р-ции характерны для циклической формы. При действии на моносахара спирта в присутствии газообразного НС1 происходит замещение атома Н полуацетального гидроксила на R с образованием особого типа простого эфира – гликозида. Р-ры гликозидов не мутаротируют. В зависимости от размера оксидного цикла гликозиды делятся на: пиранозиды и фуранозиды, как a-, так иb-форм.

Образование гликозидов служит доказательством существования циклических форм моносахаридов.

Превращение моносахарида в гликозид – сложный процесс, протекающий через ряд последовательных р-ций. Вследствие таутомерии и обратимости р-ции образования гликозида в р-ре, в равновесии в общем случае, могут находиться таутомерные формы исходного моносахарида и соответственно 4 диастереомерных гликозидов – a и b-аномеры фуранозидов и пиранозидов.

Гликозиды могут также образовываться при взаимодействии с фенолами или NH-содержащими алифатическими и гетероциклическими аминами.

Молекулу гликозида формально можно представить состоящей из двух частей: углеводной и агликоновой. В роли гидроксилсодержащих агликонов могут выступать и сами моносахариды. Гликозиды, образованные с ОН–содержащими агликонами, называются О-гликозидами, с NH-содержащими соединениями (например, аминами), наз-ся N-гликозидами.

Гликозиды являются составными частями многих лекарственных растений. Например, сердечные гликозиды, выделенные из наперстянки. Антибиотик стрептомицин – гликозид, ванилин – гликозид. Все ди- и полисахариды являются О-гликозидами.

С биологической точки зрения особое значение имеют N-гликозиды рибозы и дезоксирибозы, как продукты соединения с азотистыми пуриновыми и пиримидиновыми основаниями. Их общее название – нуклеозиды, т.к. вместе с Н 3 РО 4 они являются нуклеиновыми к-тами – ДНК и РНК.

Все гликозиды, в том числе и нуклеозиды, легко подвергаются гидролизу в кислой среде с образованием исходных продуктов.

Гликозиды не способны к цикло-оксо-таутомерии и проявляют р-ции, характерные для спиртов.

IV. Специфические р-ции

    Действие разб. р-ров щелочей

Эпимеры: глюкоза, фруктоза и манноза легко превращаются друг в друга, образуя равновесные системы. Этот процесс наз-ся эпимеризацией.

    Действие конц. р-ров к-т

Конц. р-ры НС1 и Н 2 SО 4 вызывают дегидратацию моносахаридов: из пентоз образуется фурфурол, из фруктозы – 5-гидроксиметилфурфурол.

    Брожение

Это распад моносахаридов под действием ферментов микроорганизмов, приводящий к образованию различных продуктов. В зависимости от конечного продукта различают:

а) спиртовое брожение

б) молочнокислое

Рецензенты:

доктор медицинских наук, профессор Османов Э.М.;

кандидат химических наук, доцентКнязева Л.Г.

Р Романцова С.В., Биоорганическая химия в вопросах и ответах. Часть 2. Учеб.-метод. пособие для студентов мед. спец. ун-тов / С.В. Романцова, А.И. Панасенко, Л.В. Розенблюм; М-во обр. и науки РФ, ГБОУ ВПО «Тамб. гос. ун-т им. Г.Р. Державина». Тамбов: Изд-во ТГУ им. Г.Р. Державина, 2013. …………… с.
Настоящее учебно-методическое пособие написано в соответствии с программой курса «Общая и биоорганическая химия» для студентов специальности «Лечебное дело». В пособии приведены ответы на самые распространённые вопросы, возникающие у студентов в процессе освоения курса. Даны пояснения по особенностям строения, свойств и биологической активности биополимеров, их структурных компонентов, липидов и низкомолекулярных биорегуляторов. УДК 577.1 ББК 24.2 я73 © ГОУВПО Тамбовский государственный университет имени Г.Р. Державина, 2013


Введение

Целью курса биоорганической химии, как учебной дисциплины, является формирование системных знаний о взаимосвязи строения и химических свойств биологически важных классов органических соединений, биополимеров и их структурных компонентов в качестве основы для понимания сути жизненных процессов на современном молекулярном уровне.

В преподавании биоорганической химии большое внимание уделяется самостоятельной работе студентов. В данном пособии приводятся подробные ответы на самые распространённые вопросы, возникающие у студентов в процессе освоения второй части курса, обсуждаются вопросы химической идентификации биологически важных органических соединений. Используя данные пояснения, студенты в ходе самоподготовки учатся общему подходу и логике рассуждения, что облегчает выполнение контрольных и тестовых заданий.

углеводы: моно-, ди- и полисахариды

Вопрос 1 . Какие соединения называются углеводами?

Ответ. Углеводы – класс природных органических веществ, являющихся гетерофункциональными соединениями, содержащими одновременно карбонильную и гидроксильные функциональные группы (т.е. это многоатомные альдегидо- или кето-спирты или продукты их конденсации). Термин «углеводы» воз-ник в середине XIX века в связи с тем, что в молекулах многих углеводов соотношение атомов водорода и кислорода такое же, как и в молекулах воды, т.е. на два атома водорода приходился один атом кислорода, и молекулу углевода можно представить как состоящую из углерода (угля) и воды. Например, для глюкозы (С 6 Н 12 О 6) формула может иметь вид С 6 (Н 2 О) 6 , формулу сахарозы (С 12 Н 22 О 11) можно записать как С 12 (Н 2 О) 11 , а в общем виде – С n (Н 2 О) m . Позже стали известны природные углеводы, которые не отвечают приведённой общей формуле (С n (Н 2 О) m), тем не менее, термин «углеводы» используется и в настоящее время, наряду с термином «сахариды» или просто «сахара».

Вопрос 2 . Какие функции выполняют углеводы?

Ответ. Углеводы образуются в растениях в результате фотосинтеза из углекислого газа и воды. Животные организмы не способны синтезировать углеводы, и получают их с растительной пищей. Таким образом, углеводы входят в состав всех живых организмов и являются одними из самых распространённых органических веществ на Земле. Функции углеводов:

– структурная и опорная функции (целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих);

– защитная роль (у некоторых растений есть защитные образования: шипы, колючки и др., состоящие из клеточных стенок мёртвых клеток;

– энергетическая функция (при окислении 1 г углеводов выделяются 4,1 ккал энергии);

– пластическая функция (входят в состав сложных молекул, например, рибоза и дезоксирибоза участвуют в построении АТФ, ДНК и РНК);

– запасающая функция (углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин – у растений);

– осмотическая функция (участвуют в регуляции осмотического давления в организме, в т.ч. в крови);

– рецепторная функция (входят в состав воспринимающей части многих клеточных рецепторов).

Многие углеводы и их производные находят применение в фармации и медицине. Углеводы служат исходными веществами для промышленного производства бумаги, искусственных волокон, взрывчатых веществ, этилового спирта и т.д.

Вопрос 3 . Как классифицируются углеводы?

Ответ. Углеводы подразделяются на два класса: простые и сложные. Простые углеводы (моносахариды, монозы) не гидролизуются с образованием более простых углеводов. Примерами простых углеводов могут служить: глюкоза (С 6 Н 12 О 6), рибоза (С 5 Н 10 О 5), фруктоза (С 6 Н 12 О 6).


Простые углеводы, содержащие кетогруппу, называются кетозами, альдегидную группу – альдозами. В зависимости от числа атомов углерода монозы делят на триозы (три атома углерода), тетрозы (четыре атома), пентозы (пять атомов), гексозы (шесть атомов) и гептозы (семь атомов).

Например, глюкоза содержит в молекуле альдегидную группу и шесть атомов углерода, её называют альдогексозой; фруктоза содержит карбонильную группу (является многоатомным кетоспиртом) и шесть атомов углерода, её называют кетогексозой. Рибоза является альдопентозой. Природные монозы, как правило, содержат неразветвлённые цепи атомов углерода.

D – фруктоза
D – фруктоза
D – фруктоза
Сложные углеводы способны гидролизоваться с образованием молекул простых углеводов. Если при гидролизе сложного углевода образуется от 2 до 10 молекул простых углеводов, то такой сложный углевод называется олигосахаридом. Если при гидролизе олигосахарида образуется две молекулы простых углеводов, то его называют дисахаридом, три – трисахаридом и т.д. Самыми распространёнными дисахаридами являются сахароза (при гидролизе образуются фруктоза и глюкоза), мальтоза и целлобиоза (при их гидролизе образуются две молекулы глюкозы), лактоза (при гидролизе образуются галактоза и глюкоза).

Углеводы, гидролизующиеся с образованием большого количества (до нескольких тысяч) молекул простых углеводов, называются полисахаридами. Полисахариды являются высокомолекулярными соединениями. К ним относятся, например, крахмал и целлюлоза (клетчатка). Сложные углеводы можно рассматривать, как продукты поликонденсации моносахаридов.

Если полисахариды построены из остатков одного моносахарида, то их называют гомополисахаридами; если из остатков разных моносахаридов, то – гетерополисахаридами.

Среди гомополисахаридов наиболее биологически важными являются крахмал, гликоген, целлюлоза, среди гетерополисахаридов – альгиновые кислоты, агар (содержащиеся в водорослях); полисахариды соединительной ткани (хондроитинсульфаты, гиалуроновая кислота, гепарин).

Молекулы углеводов входят в состав смешанных биополимеров, например углевод-белковых биополимеров (гликопротеины, протеогликаны) или углевод-липидных (гликолипиды).

Вопрос 4 . Являются ли моносахариды оптически активными соединениями? Как изобразить энантиомеры моносахаридов?

Ответ. Молекулы моносахаридов (кроме диоксиацетона) содержат центры хиральности (асимметрические атомы углерода), что является причиной существования стереоизомеров. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (2 4 = 16), образующих 8 пар. В альдопентозе три асимметрических атома углерода и ей соответствуют 8 стереоизомеров (2 3 = 8), образующих 4 пары.

Члены одной пары являются антиподами или энантиомерами (их молекулы относятся друг к другу как предмет к своему зеркальному изображению). Энантиомеры имеют одно и то же название, но один из них относится к D-ряду, а другой – к L-ряду. Энантиомеры можно изобразить в виде незамкнутых проекционных формул Фишера, например:

В формулах Фишера углеродная цепь записывается вертикально и нумеруется с того конца, к которому ближе альдегидная или кетогруппа, т.е. с верхнего углеродного атома. Асимметричные углеродные атомы символом «С» не обозначаются, подразумевается, что они находятся на пересечении вертикальных и горизонтальных линий.

Молекула кетопентозы содержит 2 асимметрических атома углерода (третий и четвёртый) и образует 2 пары энантиомеров:

Принадлежность изомера к D- или L-ряду определяется сравнением конфигурации наиболее удалённого от карбонильной группы асимметрического атома углерода с конфигурацией изомеров глицеринового альдегида, который принят в качестве стандарта. Глицериновый альдегид содержит в молекуле один асимметрический атом углерода и имеет два энантиомера:


Рассмотрим в качестве примера изомеры фруктозы:

D – фруктоза

В обеих формулах содержится по три асимметрических (хиральных) атома углерода. Это атомы 3, 4 и 5. Наиболее удалены от кетогруппы (С=О) хиральные атомы под номером 5. В формуле (1) конфигурация пятого атома углерода соответствует конфигурации хирального атома в молекуле D-глицеринового альдегида (ОН группа расположена справа, атом водорода – слева). Таким образом, первый изомер относится к D-ряду, это D-фруктоза. Конфигурация пятого атома углерода в формуле (2) соответствует конфигурации L-глицеринового альдегида, т.е. это L-фруктоза. Подавляющее большинство природных моносахаридов принадлежит к D-ряду.

Вопрос 5 . Встречаются ли моносахариды в природе в свободном виде?

Ответ. Самым распространённым природным моносахаридом является D-глюкоза – виноградный сахар или декстроза от лат. dextrus – правый, т.к. обычная природная D-глюкоза имеет удельное вращение + 52,5 о, т.е. вращает плоскость поляризации плоскополяризованного света на 52,5 о вправо.

В свободном виде содержится в крови, являясь основным энергетическим субстратом для мозга. Постоянный уровень глюкозы поддерживается с помощью гормона инсулина, уменьшающего концентрацию глюкозы в крови, а также глюкагона, адреналина и других гормонов, увеличивающих её концентрацию. При сахарном диабете инсулин вырабатывается поджелудочной железой в недостаточном количестве, что приводит к увеличению её концентрация в крови.

Интересно, что L-глюкоза, являясь энантиомером обычной природной D-глюкозы, также является сладкой, но не усваивается организмом, поэтому она может быть использована как заменитель сахара.

В свободном виде глюкоза содержится также в зелёных частях растений, в различных фруктах и мёде. Входит в состав крахмала, гликогена, целлюлозы, гемицеллюлоз, декстранов, сахарозы, мальтозы и многих гликозидов.

D-фруктоза – плодовый сахар или левулёза от лат. laevus – левый, т.к. водные растворы D-фруктозы имеют удельное вращение - 92,4 o .

Фруктоза содержится в зелёных частях растений, в нектаре цветов, в плодах, в мёде. Входит в состав сахарозы, а также многих полисахаридов.

D-галактоза. В свободном кристаллическом виде выделяется на плодах плюща. Встречается в качестве составной части некоторых дисахаридов (лактоза) и полисахаридов (хондроитин, агар-агар, гемицеллюлозы)

Вопрос 6 . Как написать формулу L-изомера галактозы, если известна формула D-изомера?

Ответ. Для того, чтобы написать формулуэнантиомера, необходимо изобразить в зеркальном отражении заместители у всех асимметрических атомов углерода. Запишем формулу D-галактозы, выбрав из схемы, приведённой ниже и поменяем расположение заместителей (–Н и –ОН) у 2, 3, 4 и 5 атомов углерода:


Название энантиомера: L-галактоза.

Вопрос 7 . В чём состоит различие между диастеромерами, эпимерами и энантиомерами?

Ответ. Стереоизомеры углеводов, отличающиеся конфигурацией одного или нескольких асимметрических атомов углерода, называются диастереомерами, например: D-аллоза и D-манноза; D-фруктоза и L-тагатоза и т.д.

Эпимеры и энантиомеры – частные случаи диастереомеров.

Диастереомеры, относящиеся друг к другу как предмет к своему зеркальному изображению, называются энантиомерами. Энантиомеры имеют одинаковые физические и химические свойства, отличаются эти изомеры только направлением вращения плоскости поляризации плоскополяризованного света. Различается также биологическая активность энантиомеров.

Если диастереомеры различаются конфигурацией только одного асимметрического атома углерода, то их называют эпимерами. Если различается конфигурация второго атома углерода, то такие диастереомеры называют просто эпимерами; если других атомов углерода, то к названию добавляется номер этого атома.

Например, D-рибоза и D-арабиноза отличаются конфигурацией только второго атома углерода и являются эпимерами.

D-аллоза и D-глюкоза отличаются конфигурацией только третьего атома углерода и являются 3-эпимерами, а D-аллоза и D-гулоза – 4-эпимерами.

Эпимеры имеют различные физические и оптические свойства, а также биологическую активность.

Вопрос 8 . Как определить, являются ли диастереомерами D-аллоза и L-идоза?

Ответ. Дляэтого надо написать формулы этих альдоз. Формула D-аллозы приведена на схеме (см. вопрос 6). L-идоза являются энантомером D-идозы, т.е. их молекулы относятся друг к другу как предмет и его зеркальное изображение и, зная формулу D-идозы легко записать формулу L-идозы (см. вопрос 6):

Диастереомеры, по определению, должны отличаться конфигурацией одного или нескольких асимметрических атомов углерода. Из рассмотрения формул D-аллозы и L-идозы следует, что конфигурации второго и четвёртого атомов углерода у них одинаковы (и в молекуле D-аллозы и в молекуле L-идозы ОН группы у этих атомов расположены справа, а атомы водорода – слева).


Конфигурации третьего и пятого атомов углерода отличаются (в молекуле D-аллозы ОН группы находятся справа от углеродной цепи, а в молекуле L-идозы – слева). Таким образом, D-аллоза и L-идоза отличаются конфигурацией двух асимметрических атомов углерода: третьего и пятого, и, следовательно, являются диастереомерами.

Вопрос 9 . Как определить, являются ли эпимерами D-глюкоза и D -манноза?

Ответ. Дляэтого надо написать формулы этих альдоз. Формула приведены на схеме (см. вопрос 6).

Эпимеры являются частным случаем диастереомеров и, по определению, должны отличаться конфигурацией только одного асимметрического атома углерода. Из рассмотрения формул D-глюкозы и D-маннозы следует, что у третьего атома углерода в обеих молекулах атом водорода расположен справа, а гидроксильная группа – слева; у четвёртого и пятого атомов углерода в обеих молекулах атом водорода расположен слева, а гидроксильная группа – справа; т.е. конфигурации третьего, четвёртого и пятого асимметрических атомов углерода у D-глюкозы и D-маннозы одинаковы.

Конфигурация второго атома углерода отличается (в молекуле D-глюкозы ОН группа находится справа от углеродной цепи, а в молекуле D-маннозы – слева). Таким образом, D-глюкоза и D-манноза отличаются конфигурацией только одного (второго) асимметрического атома углерода и, следовательно, являются эпимерами.

Вопрос 10 . Как образуются циклические формы моносахаридов?

Ответ. Циклические формы моносахаридов образуются в результате внутримолекулярного взаимодействия между карбоксильной и гидроксильной группами. Эти формы термодинамически более устойчивы, чем открытые формы молекул углеводов. Обычно возникают пятичленные (фуранозные) и шестичленные (пиранозные) циклы. В пространстве оказываются сближенными альдегидные (или кетонные) группы и гидроксильная группа при четвёртом или пятом (для альдоз) и пятом и шестом (для кетоз) атоме углерода. За счёт их взаимодействия и происходит замыкание циклов в молекулах моносахаридов.

Шестичленный пиранозный цикл образуется при взаимодействии альдегидной группы с пятым атомом альдопентоз или альдогексоз; а также при взаимодействии кетогруппы с шестым атомом кетогексоз.


Пятичленный фуранозный цикл образуется при взаимодействии альдегидной группы с четвёртым атомом альдотетроз, альдопентоз и альдогексоз; а также при взаимодействии кетогруппы с пятым атомом кетопентоз и кетогексоз.



В результате образования цикла в молекуле альдогексозы у первого атома углерода вместо альдегидной группы появляется гидроксильная группа (у кетогексоз у второго атома углерода). Эта гидроксильная группа получила название гликозидной (полуацетальной) гидроксильной группы (гликозидный гидроксил). В названиях циклических форм к обозначению углевода добавляется окончание «пираноза» для шестичленного цикла или «фураноза» для пятичленного цикла.

В циклической молекуле моносахарида увеличивается число асимметрических атомов углерода, т.к. асимметрическим становится атом углерода, который ранее входил в состав альдегидной или кетонной группы. В случае галактозы это первый, а в случае фруктозы – второй атом углерода. Этот атом получил название аномерного углерода. Появление дополнительного асимметрического атома приводит к увеличению числа оптических изомеров, соответствующих циклической форме, в два раза по сравнению с открытой формой. Так, для альдогексозы это уже не 16, а 32 изомера. Каждому изомеру открытой формы отвечают два изомера циклической формы (аномеры).

У α-аномера конфигурация аномерного центра одинакова с конфигурацией асимметрического атома углерода, определяющего принадлежность к D- или L-ряду, а у β-аномера она противоположна. В проекционных формулах Фишера у моносахаридов D-ряда в α-аномере гликозидная гидроксильная группа находится справа, а в β-аномере – слева от углеродной цепи; для L-изомеров наоборот, в α-аномере гликозидная гидроксильная группа находится слева, а в β-аномере – справа от углеродной цепи. Аномеры являются диастереомерами и отличаются по своим свойствам (например, по температурам плавления). Аномеры можно рассматривать как частный случай эпимеров.

Вопрос 11 . Как изображаются циклические формы моносахаридов в виде перспективных формул Хеуорса?

Ответ. В системе Хеуорса циклы изображают в виде плоских пяти- или шестиугльников, расположенных перпендикулярно плоскости рисунка, поэтому линии, соответствующие передней части кольца выделяют более жирным шрифтом. Атом кислорода располагается в пиранозном цикле в дальнем правом углу, в фуранозном – также в дальнем правом углу или в середине задней части кольца. Гидроксильные группы и атомы водорода располагают перпендикулярно плоскости цикла. Символы атомов углерода в циклах обычно не пишутся.


Чтобы написать формулу Хеуорса вначале изображают формулу Фишера и поворачивают её на 90 о вправо (по часовой стрелке:

Поворачивают на 90 о атом углерода, связанный с гидроксильной группой, вступающей в реакцию циклизации. При построении маннофуранозы это будет четвёртый атом углерода, при построении маннопиранозы – пятый. В результате поворота группа –ОН должна расположиться в одну линию с основной углеродной цепью. Поэтому для D-изомера группа –СН 2 ОН окажется вверху, а для L-изомера – внизу:


В названии циклической формы указывается: тип аномера (a или b), затем принадлежность к стереохимическому ряду: D- или L-; затем название моносахарида, производным которого является данная циклическая форма, без окончания «–за», то есть оставляем глюко-, манно-, фрукто- и т.д., в заключение указывается тип циклической формы (пираноза или фураноза).

У альдогексоз D-ряда в пиранозной форме (и у альдопентоз и кетогексоз D-ряда в фуранозной форме) группа СН 2 ОН всегда располагается над плоскостью цикла, что служит формальным признаком D-ряда. Для L-ряда эта группа располагается под плоскостью цикла. Гликозидная группа –ОН у a-аномеров альдоз D-ряда оказывается под плоскостью, а у b-аномеров – над плоскостью цикла. Для соединений L-ряда гликозидный гидроксил у a-аномеров L-ряда оказывается над плоскостью, а у b-аномеров – под плоскостью цикла.

Следуя приведённым выше правилам, можно написать формулы Хеуорса для фуранозных и пиранозных форм кетоз, например для фруктозы:




Вопрос 12 . В каких формах (открытых или циклических) преимущественно находятся моносахариды в твёрдом состоянии и в растворе?

Ответ. В твёрдом состоянии моносахариды находятся в циклической форме (преимущественно пиранозной). В растворах устанавливается равновесие между открытой формой и двумя парами циклических аномеров (цикло-оксо-таутомерное равновесие или цикло-цепная таутомерия). Различные формы молекул, находящихся в состоянии такого равновесия называются таутомерами. В смесях таутомеров преобладают пиранозные формы. Открытые формы и фуранозные циклы содержатся в малых количествах. Преобладание a- или b-аномера зависит от природы монозы, растворителя, концентрации и других внешних условий.

Таутомерные формы углеводов могут переходить друг в друга, что приводит к пополнению количества той или иной формы по мере её расходования в каком-либо процессе. Равновесие между всеми формами является, таким образом, динамическим. Так, если какой-либо аномер глюкозы растворить в воде, он постепенно превращается в другой аномер, пока не образуется равновесная смесь двух аномеров, в которой также содержится очень небольшое количество открытой формы. Этот переход сопровождается изменением оптического вращения раствора, т.к. для каждого таутомера характерен свой угол вращения плоскости поляризации плоскополяризованного света. Такое явление называют мутаротацией моносахаридов.


Вопрос 13 . Напишите a-фуранозную и b-пиранозную формы L-арабинозы. Изобразите их аномеры в виде проекций Фишера.

Ответ. За исходное соединение необходимо взять D-арабинозу. Записываем её формулу и строим формулу её энантиомера (см. вопрос 6).

L-арабиноза – альдопентоза. Её фуранозная форма образуется за счет взаимодействия альдегидной группы с гидроксилом четвертого углеродного атома; а пиранозная форма – за счет взаимодействия альдегидной группы с гидроксилом пятого атома углерода. При циклизации водород гидроксильной группы (С 5 или С 4) присоединяется к кислороду альдегидной группы за счет разрыва p-связи С–О, образуя полуацетальный, или гликозидный, гидроксил (заключен в рамку). Кислород гидроксильной группы у атома С 4 или С 5 после отщепления от него водорода соединяется с углеродом альдегидной группы у атома С 1 . Возникает кислородный мостик, связывающий атомы С 1 –С 4 и замыкающий пятичленный цикл, или С 1 –С 5 и замыкающий шестичленный цикл.

О О НО Н Н ОН

С – Н 1 С – Н C С

НО Н Н 2 ОН H ОН H ОН

Н ОН НО 3 Н HO Н HO Н

Н ОН НО 4 Н О Н О Н

СН 2 ОН 5 СН 2 ОН СН 2 ОН СН 2 ОН

D-арабиноза L-арабиноза a-L-арабинофураноза b-L-арабинофураноза

О О НО Н Н ОН СН 2 ОН 5 СН 2 ОН О СН 2 О СН 2

D-арабиноза L-арабиноза a-L-арабинопираноза b-L-арабинопираноза

В полуацетальной форме первый атом углерода превратился в асимметрический. В результате этого при замыкании цикла из одной открытой альдегидной формы (оксоформы) получаются две циклические полуацетальные формы, отличающиеся одна от другой положением полуацетального гидроксила.

Циклическая форма, у которой полуацетальный гидроксил расположен по одну сторону (в циc-положении) с гидроксилом, определяющим конфигурацию (принадлежность к D- или L-ряду) монозы, называется a-формой. Циклическая форма, у которой полуацетальный гидроксил находится в транс-положении с гидроксилом, определяющим конфигурацию, называется b-формой. a и b-Формы представляют собой диастереомеры, называющиеся аномерами.

Вопрос 14 . Какие соединения получаются при восстановлении D-глюкозы и D-фруктозы?

Ответ. При восстановлении моносахаридов образуются многоатомные спирты (полиолы), называемые альдитами. Восстановление обычно проводят водородом в присутствии металлических катализаторов (палладий, никель) или боргидридом натрия. Водород присоединяется по месту разрыва двойной связи углерод – кислород карбонильной группы. При восстановлении альдоз получается лишь один продукт (полиол), например при восстановлении D-глюкозы образуется шестиатомный спирт D-глюцит (L-сорбит):

D-глюцит, как и D-глюкоза является оптически активным соединением, т.к. в его молекуле присутствует 4 асимметрических атома углерода (2, 3, 4, 5) и отсутствуют элементы симметрии.

Восстановление глюкозы в сорбит является первой стадией химического синтеза аскорбиновой кислоты. Сорбит окисляют микробиологически, используя микроорганизм Acetobacter suboxydans; образующуюся L-сорбозу в несколько стадий превращают в аскорбиновую кислоту.

При восстановлении кетоз получается смесь двух полиолов, т.к. атом углерода, входивший в состав кетогруппы, после восстановления становится асимметрическим и для него возможно двоякое расположение ОН группы и атома водорода в пространстве (как слева, так и справа от углеродной цепи). Например, для D-фруктозы имеем:


D-глюцит и D-маннит обладают оптической активностью.

Многоатомные спирты, получающиеся при восстановлении моносахаридов, - кристаллические вещества, хорошо растворимые в воде; обладают сладким вкусом и могут использоваться, как заменители сахара при сахарном диабете (ксилит, сорбит).

Вопрос 15 . При восстановлении каких альдогексоз образуются оптически неактивные шестиатомные спирты?

Ответ. При восстановлении D-галактозы и D-аллозы получаются шестиатомные спирты дульцит и аллит соответственно. Молекулы этих спиртов имеют плоскость симметрии, проходящую между третьим и четвёртым атомати углерода, следовательно, эти полиолы оптической активностью не обладают.

Вопрос 16 . Какие соединения могут получаться при окислении L-галактозы? Будут ли эти соединения оптически активны?

Ответ. Реакции окисления используются при биохимических анализах (например, анализ крови и мочи на сахар). Состав и строение продуктов окисления моносахаридов зависит от природы монозы и условий окисления (прежде всего от силы окислителя). Альдозы окисляются легче кетоз.

Под действием мягких окислителей (аммиачный раствор оксида серебра, гидроксид меди, бромная вода) альдозы превращаются в альдоновые кислоты (альдегидная группа окисляется до кислотной карбонильной группы).

А) реакция «серебряного зеркала» (реакция Толленса):

Внешний признак протекания реакции – образование на стенках пробирки слоя металлического серебра.

Б) реакция с гидроксидом меди (II):

Внешний признак протекания реакции – превращение голубого осадка гидроксида меди (II) в красный осадок оксида меди (I).

В) окисление бромной водой (внешний признак протекания реакции – обесцвечивание раствора брома):


С помощью сильного окислителя – разбавленной азотной кислоты – концевые группы альдоз (альдегидная и первичная спиртовая) одновременно окисляются в карбоксильные группы, образуя альдаровые (сахарные) кислоты, например:

Эта реакция может быть использована для обнаружения галактозы, т.к. слизевая кислота трудно растворяется в воде. Следует обратить внимание на тот факт, что, хотя в молекуле слизевой кислоты имеется четыре асимметрических атома углерода (2, 3, 4, 5), она не проявляет оптической активности, т.к. обладает плоскостью симметрии.

В организме при участии ферментов может окислиться первичная спиртовая группа, в то время, как альдегидная группа в результате остаётся не окисленной. Продукты таких реакций называют уроновыми кислотами:

В организме уроновые кислоты выполняют очень важную функцию: они образуют с лекарственными веществами и продуктами их превращений (метаболитами), токсичными веществами водорастворимые гликозиды и выводят их из организма с мочой, отсюда происходит название уроновых кислот (лат. urina – моча). D-глюкуроновая и L-идуроновая кислоты и их производные являются структурными элементами различных полисахаридов (пектиновые вещества, гепарин, гиалуроновая кислота, хондроитин, гепарин и т.д.). В ходе метаболизма уроновых кислот синтезируется аскорбиновая кислота (у человека не синтезируется).

Вопрос 17 . Какие соединения могут получаться при окислении D-фруктозы? Будут ли эти соединения оптически активны?

Ответ. Окисление кетоз происходит под действием сильных окислителей и сопровождается деструк­цией углеродного скелета. Разрыв связи может происходить двумя способами: между первым и вторым, а также вторым и третьим атомами углерода. При этом все концевые атомы углерода окисляются с образованием карбоксильных групп.

Так, при окислении D-фруктозы образуется четыре продукта реакции. При разрыве связи между первым и вторым атомами углерода образуются муравьиная и D-арабинаровая кислоты. При разрыве связи между вторым и третьим атомами углерода образуются щавелевая и мезовинная кислоты.